假设有一块P型半导体(用黄色代表空穴多)和一块N型半导体(用绿色代表电子多),它们自然状态下分别都是电中性的,即不带电。如图1所示。
     图1. P型和N型半导体
     把它们结合在一起,就形成PN结。边界处N型半导体的电子自然就会跑去P型区填补空穴,留下失去电子而显正电的原子。相应P型区边界的原子由于得到电子而显负电,于是就在边界形成一个空间电荷区。为什么叫“空间电荷区”?是因为这些电荷是微观空间内无法移动的原子构成的。
     空间电荷区形成一个内建电场,电场方向由N到P,这个电场阻止了后面的电子继续过来填补空穴,因为这时P型区的负空间电荷是排斥电子的。电子和空穴的结合会越来越慢,最后达到平衡,相当于载流子耗尽了,所以空间电荷区也叫耗尽层。这时PN结整体还呈电中性,因为空间电荷有正有负互相抵消。如图2所示。
     图2. PN结形成内建电场
     外加正向电压,电场方向由正到负,与内建电场相反,削弱了内建电场,所以二极管容易导通。绿色箭头表示电子流动方向,与电流定义的方向相反。如图3所示。
     图3. 正向导通状态
     外加反向电压,电场方向与内建电场相同,增强了内建电场,所以二极管不容易导通。如图4所示。当然,不导通也不是绝对的,一般会有很小的漏电流。随着反向电压如果继续增大,可能造成二极管击穿而急剧漏电。
     图4. 反向不导通状态
     图5是二极管的电流电压曲线供参考。
     图5.二极管电流电压曲线
     图6形象的展示了不同方向二极管为什么能导通和不能导通,方便理解。
     图6. 不同方向导通效果不同
     生活中单向导通的例子也不少,比如地铁进站口的单向闸机,也相当于二极管的效果:正向导通,反向不导通,如果硬要反向通过,可能就会因为太大力“反向击穿”破坏闸机了。


 会员中心
 会员中心 会员注册
 会员注册 
  
  
  
  
  
  返回顶部
返回顶部 刷新页面
刷新页面 下到页底
下到页底